People and plants
Piecing together archaeological and archaeobotanical data to reconstruct plant use and craft activities in Mycenaean Tiryns

Abstract**
Archaeobotanical data are often employed to reconstruct a site's or a region's palaeoecology, human use of plants such as agricultural regimes, and the interplay between vegetation and anthropogenic factors in the palaeoenvironment. This paper aims to show that a context-specific integration of such data helps to guide the focus beyond the macroscale and may thus add significantly to the reconstruction of microscale activity areas. New archaeobotanical data from four different find spots in the Lower Citadel of Tiryns, Greece, dating to the Mycenaean Palatial and Post-Palatial periods highlight the importance of combining the analysis of the fruit/seed macroremains with anthracological and phytolith studies and integrating these results in their archaeological contextual study. Based on the data from botanical non-wood macroremains, wood charcoal, and phytoliths, the paper discusses methodological issues such as differential preservation of archaeobotanical remains that only becomes evident if more than one analytical method is employed. The paper additionally presents a contextual interpretation of archaeological finds and archaeobotanical remains that adds to a holistic picture of specific activity areas, production sequences, and the multifunctional use of installations.

Keywords: Mycenaean Tiryns, archaeobotany, anthracology, phytoliths, pyrotechnology

Introduction
The Aegean consists of very diverse ecological niches. Together, plant remains, palynological studies, and iconographic and epigraphic analyses of plants in use by various communities over time provide a general picture of the palaeoecology of several regions within the Aegean.

This paper presents a localized analysis of plant remains from the Late Bronze Age site of Tiryns in the Argolid, Greece (Fig. 1), in order to investigate questions of people-plant interactions in select 13th–12th century BC contexts. Tiryns is one of the most important sites of the Mycenaean period and has been archaeologically investigated for more than a century. During the Late Helladic (LH) period Tiryns probably acted as one of the main harbours of the Argolid. The site, located near the sea, comprised several settlement areas in the lowlands around the fortified citadel, which features one of the best preserved Mycenaean “palaces” of the 14th and 13th centuries BC (LH IIIA–B) on its highest plateau, the Upper Citadel. After the collapse of the Mycenaean palatial societies c. 1200 BC, Tiryns is one of the few sites on the
Greek mainland that seem to have witnessed an extension of its settlement area that flourished throughout the 12th century BC (LH IIIC). Heinrich Schliemann was the first to mention archaeobotanical finds from the Upper Citadel in Tiryns; in 1886 he reported “grape pips of unusually large size”. Almost a century later, Helmut Kroll published a detailed report on plant remains of the Mycenaean Late Palatial and Post-Palatial periods from various contexts in the Lower Citadel and from a settlement area outside and north of the citadel. Kroll also used the archaeobotanical evidence from Tiryns to discuss traits of Mycenaean agriculture and plant use in general. A short report on plant finds from another Post-Palatial settlement area north-east of the citadel was published in 2006. A brief general review based on the archaeobotanical residues in Tiryns recently summarized the evidence hitherto published.

All these studies have in common a site-wide but not context-specific overview of the identified species and taxa. They are thus important for a general reconstruction of ecological and environmental conditions, agricultural regimes, and the use of specific plants in the later part of the LH period in Mycenaean Tiryns. From these, it seems that barley (Hordeum sp.) constituted the main cereal crop, followed by einkorn (Triticum monococcum) and emmer (Triticum dicoccum); cereals were apparently stored in husked form to prevent damage to the seeds. Legumes were mostly represented by bitter vetch (Vicia ervilia) and to a lesser degree by lentils (Lens culinaris), chickpeas (Cicer arietinum) and peas (Pisum sativum). Figs (Ficus carica) and grapes (Vitis vinifera) are abundantly attested while a notable increase in olive (Olea europaea) cultivation during the Mycenaean Palatial period is evidenced by frequent olive stones and charred olive wood representing the dominant taxa in the anthracological remains. The archaeobotanical record has also provided evidence for a few “exotic” species: pomegranate (Punica granatum) seeds were recorded, next to...
honey melon (Cucumis melo) seeds and a single uncharred specimen of tentatively identified rice (Oryza sativa). Other non-comestible usages of plant parts are observed too in the archaeobotanical record of Tiryns. Of interest are the roots of bugloss (Echium sp.), as a likely source of red dye; Kroll notes that bugloss is so common in the samples that it was probably intentionally collected and brought to the settlement for further processing. He argues for intensified agriculture in the Late Palatial period near or even beyond the carrying capacity of the land coupled with intensive horticulture and an essentially similar, but less intensive, agricultural regime during the Post-Palatial period.

Publications of archaeobotanical data for the Late Bronze Age Argolid are still few despite the long-term and large-scale excavations in this region with Tiryns providing most data so far. This lack of data is partly due to the past excavation of large habitation areas without systematic sampling, and as a result archaeobotanical studies of areas within Mycenaean citadels have to deal with partial data sets.

While earlier publications offer a general picture of plant use and palaeovegetation, the analyses reported in this paper focus on the detailed, microscale interpretation of specific contexts. They also contribute towards the macroscale reconstruction of the whole site’s or even region’s ecology and plant management practices, which, however, in its entirety is beyond the scope of this paper. The archaeobotanical samples described below were subjected to three different analyses: seed and other non-wood plant remains, wood charcoal, and phytoliths.

The major aim of this paper is to present a methodological discussion about the extent to which archaeobotanical remains, extracted from specific contexts indicating craft activities, can add to our knowledge of production sequences and practices reflected in perishable material that are often not integrated into discussions of activity areas or functional interpretations of archaeological features and inorganic finds. In analysing the archaeobotanical remains derived from four different find spots in the Lower Citadel of Tiryns, this interdisciplinary study also aims to throw further light on questions regarding plant-related practices and their local and regional palaeoenvironmental setting, as well as the archaeological interpretation of these contexts. Tackling archaeobotanical data derived from unsystematic or incomplete sampling strategies often constitutes the last means to gain information on already excavated contexts and settlement areas. The current paper thus aims to outline problems, but also to indicate how context-specific archaeobotanical analyses may add important new data for interpretation. The major advantage of an integrated archaeobotanical study involving different categories of plant remains is that each method provides complementary information: woody species are identified by archaeology, seed and fruits are identified by the analysis of non-wood macroremains, while the unburnt parts of the plants (fruits, leaves, stems) can also be detected by the study of phytoliths. Therefore a greater range of past plant uses can be investigated.

Archaeobotanical non-wood macroremains, cultivated plants, fruits, and nuts as well as wild species enter the archaeological record in settlements as remains of specific human activities and are preserved in various ways (carbonization, mineralization, waterlogging, desiccation). In Greece the most common mode of preservation of macroremains is charring so the plants must have come in contact with fire and such a mode of preservation represents differential preservation of fruits and seeds in fires or hearths, which ended up there as refuse of consumption and domestic activities. It is thus important to interpret them by taking into consideration their contextual associations and attributes. Equally crucial is the composition of the samples: what kind of plant remains are present, and in what proportions, as these may be indicative of human activities and behavioural patterns.

Wood charcoal macroremains are common finds in archaeological deposits since wood was used in the past for all kinds of domestic activities (notably as fuel and timber) and craftwork. Different types of archaeological contexts and ways of deposition (e.g., as discarded fuel waste or in situ burnt fuel wood and timber remains) may provide information regarding the local vegetation of an area in the past, woodland management, and the use of woody plants in domestic and/or other activities.

10 Kroll 1982, 477 fig. 1, 6, 480–481.
11 Kroll 1982, 468, 477 fig. 1, 2.
12 Kroll 1982, 482.
15 Animal bones and molluscs have been collected during the excavation campaigns, from which our samples derive, but the archaeozoological data have yet to be studied by specialists and thus cannot be incorporated into the current discussion; for a brief summary of previous archaeozoological studies in Tiryns see Mühlenbruch 2013, 273–278 with further references.
16 These contexts were initially selected for study, because the archaeological remains indicated craft activities, which AB and MV investigated on the basis of several case studies in the course of the project “Cross-Craft Interaction in the cross-cultural context of the late Bronze Age Eastern Mediterranean” (see http://www.tracingnetworks.ac.uk/content/web/cross_craft_interaction.jsp) that was part of the larger “Tracing Networks: Craft traditions in the ancient Mediterranean and beyond” research programme.
17 Fuller et al. 2014.
18 See Buchholz 2004 for a general overview. We thank Walter Gauß for this reference.
industrial activities. The interpretation of the anthropological assemblages is based on the distinction drawn between:

1. wood charcoal concentrated in hearth, oven, and kiln features, structural timber and/or undisturbed floor deposits with remains of charred furniture or installations. This material reflects short-term events, episodic use of firewood, and specific human activities such as construction;

2. wood charcoal found scattered in deposits that accumulated through time as a result of long-lasting activities (e.g., repeated episodes of fuel waste deposition over long periods of time). In this case wood charcoals represent long-term collection of the plant species available in the environment, mostly for fuel, and are thus likely to provide a representative picture of the past vegetation and its management through time.

Phytoliths, on the other hand, are microscopic inorganic bodies that do need to be charred in order to be preserved in the sediments. They consist of amorphous silica (opal) and develop in the cellular system of living plants. The opal replicates the shape and the size of the cell in which it is formed and thus phytoliths can be classified botanically according to their morphology. They are released and deposited through decay-in-place mechanisms and for this reason the phytoliths constitute, in most cases, *in situ* microremains in archaeological sediments.

Sampled contexts and archaeobotanical methods

In order to discuss how archaeobotanical remains can aid in reconstructing production sequences and practices, both in craft activity areas but also in contexts beyond obvious crafting activities, the archaeobotanical remains of two pyrotechnological installations were investigated and compared with samples from a destruction deposit in an open space and from sediments within a room sealed by a destruction layer. These different contexts were chosen to present a variety of depositional incidents (multiple versus single-event) and, as such, were expected to contribute towards the reconstruction of the site’s plant usage and management strategies. Although the samples from the specific case studies may only provide limited data on the general palaeoecology due to their small number, they were specifically selected to identify a variety of workshop and craft activities. The stratigraphy and small finds of these contexts had already been studied in detail. Building on these archaeological studies, an integration of archaeobotanical data as the “least visible remains” in settlement contexts was deemed indispensable to more detailed reconstructions of past practices or *chaînes opératoires* involving people-plant interactions. We believe that an equally detailed study of the archaeobotanical material from these contexts aids in understanding the activities carried out there even better, and that the much more ephemeral people-plant interactions become, as such, more visible.

Sampled contexts

The Lower Citadel within the fortification walls constituted a densely inhabited and probably prosperous settlement area in the LH IIIB and C periods. Large-scale excavations in the 1970–1980s provided ample evidence for domestic, craft, and cult activities and the bulk of Kroll’s archaeobotanical data from Tiryns stems from here. In 2000–2005 excavations within a larger *anastylosis* programme focused on the settlement area on the western side of the Lower Citadel and investigated several spaces not completely excavated previously. The results presented in this paper are based on analyses of archaeobotanical samples that were retrieved from four different contexts (Fig. 2): Room 10, oven no. 46/03, Passageway and oven no. 79/02.

Room 10 (Fig. 3)

Room 10 is part of Building Complex A in the western central Lower Citadel and was in use during the Mycenaean Palatial period (phases LH IIIB Developed and Final, stratigraphic horizons22 17 a1-18). Building Complex A is the so far most elaborate building within the Lower Citadel during LH IIIB Developed/Final closely imitating palatial-style architecture with its deep foundations and massive walls, a column-flanked entrance, an internal staircase, and monolithic thresholds in all internal entrances.23 Room 10 is a small interior basement room (measuring c. 7.50 m² with a ceiling of approximately 1.90 m height) in the north-west part of the building and constitutes a transitory area between Room 9 to the south and Room 7 to the north. The room witnessed two or three floor

22 Brysbaert 2014; Brysbaert & Vettet 2010; 2013; 2015.
24 For the system of stratigraphic horizons in the Lower Citadel of Tiryns, see Rahmstorf 2008, 14; Mühlenbruch 2013, 3, table, 13–15.
Fig. 2 (above). Plan of Lower Citadel indicating location of Room 10 and Lower Citadel North; plan courtesy of Joseph Maran/Tiryns Archive, adapted by M. Vettes.

Fig. 3 (left). Plan of Room 10 within Building Complex A (Hor. 17, LH IIIA Developed and Final); plan based on excavation plans in the Tiryns Archive, adapted by M. Vettes.
renovations during its occupation in LH IIIIB Developed and LH IIIIB Final. Sediment samples from Room 10 (samples from find spots ΤΠΡΥΝΣ 22/09/2004 Ωμάδα 117 Χάμα από το γκρίζο στρώμα δωματίου Ρ10 LX 38/100, LXI 38/91.92, LX 39/10, LXI 39/01; at 13.23/13.21–13.11 masl), were taken from a baulk measuring c. 1 × 1.50 m and an east–west oriented soil socle beneath a later Archaic wall in an area of c. 2 × 0.50 m in the south part of the room, which had been left standing since Klaus Kilian’s excavations in the late 1970s and early 1980s. The samples presumably come from what Kilian described as thick, dark, and ashy layers with intervening heavy traces of fire were previously noted only in the south-west corner of the adjacent Room 7 (next to the entrance of Room 10), where excavations had unearthed a roughly semi-circular clay platform that was lined by a double row of stones. Based on the finds (a few ground stone artefacts but no evidence for tool kits, nodebitage or other production waste, almost no semi-finished objects, a single small lump of metalliferous ore, several terracotta figurines on subsequent floor levels, and drinking vessels in the final destruction debris which had apparently fallen down from an upper storey and were warped due to high temperature exposure), Kilian interpreted Room 10 as a place for small-scale craft activities.

Kroll analysed two archaeobotanical samples from the north and north-west part of the room that apparently originate from the ash layer and contained a rather large amount of arable and unroofed area which underwent modifications at least once, was found immediately south of these walls and probably formed an exterior well frequented surface horizon of the newly excavated building. Since Room 10 featured no fireplace or hearth and the trampled surface, but the younger trampled surface still abutted against its west side. The oven was apparently not covered by a compact surface horizon (“Laufhorizont”), i.e. a trampled and unroofed area which underwent modifications at least once, was found immediately south of these walls and probably formed an exterior well frequented surface horizon of the partially excavated building, provisionally dated to LH IIIB Early/Middle. Oven no. 46/03 was excavated on the older trampled surface, but the younger trampled surface still abutted against its west side. The oven was apparently not covered on the top and opened towards the south. The sampled ashy layer, which surrounded the oven and was also found inside it, sloped from its northern interior face to its southern exterior. One of the main questions with regard to this rather sturdily built oven was whether the small finds and the archaeobotanical remains from its ashy fill may hold clues to its use.

The stratigraphically oldest archaeobotanical sample (from find spot LXIII 34/21 VIF no. 46/03), was taken from an ashy layer inside and around a mudbrick feature in the form of a horseshoe-shaped oven (TN 18; no. 46/03, Figs. 4–5) that came to light in a small area under the southeast part of the LH IIIIB Final Building XI. Since later remains restricted the area available for investigation, only parts of this stratum could be excavated: remnants of an architectural structure consisting of two perpendicular walls with a mudbrick superstructure and a floor between the walls. The north and east borders of this “room” have not been excavated. However, part of a compact surface horizon (“Laufhorizont”), i.e. a trampled and unroofed area which underwent modifications at least once, was found immediately south of these walls and probably formed an exterior well frequented surface horizon of the partially excavated building, provisionally dated to LH IIIB Early/Middle. Oven no. 46/03 was excavated on the older trampled surface, but the younger trampled surface still abutted against its west side. The oven was apparently not covered on the top and opened towards the south. The sampled ashy layer, which surrounded the oven and was also found inside it, sloped from its northern interior face to its southern exterior. One of the main questions with regard to this rather sturdily built oven was whether the small finds and the archaeobotanical remains from its ashy fill may hold clues to its use. In
other words, do the data suggest various contemporaneous or sequential uses, i.e. perhaps as a multifunctional installation, and are they solid enough to support such an interpretation? Starting with an archaeological assessment of the context, horseshoe-shaped clay installations or box-oven constructions are not a frequent feature in the domestic architecture of the Lower Citadel and elsewhere. A concentration of such ovens, attested in the Post-Palatial Lower Citadel North, evokes the impression that they were used on an industrial scale37 (e.g., as metallurgical kilns) rather than as simple hearths and fireplaces. Yet Kilian posited multifunctional uses, even for an oven that clearly contained fragmentary metallurgical debris.38 The small finds associated with the LH IIIB Early/Middle oven

37 For a more detailed discussion about the meaning of "industrial scale", see the forthcoming monograph on the Tracing Networks project (in preparation).
38 Kilian 1988, 126–130.
no. 46/03 do not suggest its use for metallurgical activities, as neither metal artefacts nor slag or crucible fragments were retrieved from it. However, a burnt ostrich eggshell fragment39 may indicate other craft activities associated with it.

39 See the discussion in Brysbaert 2013a.

Passageway

Samples from the passageway (find spots LXIII 35/24.34 IVH, LXIII 35/33.34 43.44 V, LXIII 35/34 VA) derive from an ashy layer on top of its last Palatial surface (“Laufhorizont”) (Fig. 6) connecting the North Gate of the Lower Citadel with the Middle and ultimately the Upper Citadel (Fig. 7). The passageway dissects the Lower Citadel from north to south.
and connects the settlement in the Lower Citadel with the suburbs outside the fortified hill via the North Gate. During the Late Palatial period (LH IIIB Final, stratigraphic horizons 17 a5-18) the northern part of the passageway was flanked by Building XI on a lower terrace to the west and Building XV on a higher terrace to the east. In recent publications Building XI has featured as one of the clearest archaeological contexts for a craft workshop area in Tiryns. The building is situated immediately south-west of the North Gate and is bounded on its western side by the inner façade of the fortification wall. No built ovens or hearths were excavated in Building XI except for the central fireplace in Room 78a that yielded unique finds not attested elsewhere in Tiryns and Mycenaean Greece and evidence for intricate and highly specialized craft activities.

South-east of Building XI’s façade an approximately 20 cm thick ashy layer was discovered on top of the LH IIIB Final surface of the passageway and comprised burnt debris from the Final Palatial destruction layer (stratigraphic horizon 18). During excavation, no fallen mudbricks from collapsed walls (from an upper storey of Building XI to the west or Building XV to the east) were recorded in the destruction deposit of the passageway. Also, the walls of Building XI do not seem to have supported an upper storey and there are no indications within that architectural structure of finds or features that could have collapsed from an upper storey. Within the ashy layer, several largely preserved vessels, inter alia a Canaanite amphora with Cypro-Minoan signs on its handles, a wall bracket, a so-called Levanto-Helladic chalice, and fragments of a faience rhyton in the form of an animal’s or demon’s head were excavated. These finds, and even more so the combination of such rather “exotic” objects point to close contacts beyond mere trade with other communities within the Eastern Mediterranean basin, likely Cyprus or the Levantine coast, during the end of the Palatial period.

Oven no. 79/02

The remaining samples derive from a horseshoe-shaped, well-built Post-Palatial mudbrick oven (TN 367, excavation no. 79/02) discovered in layers above Building XI (find spots LXIII 35/21 VA no. 79/02: surface above/around oven; and LXIII 35/11 VC no. 79/02, LXIII 35/11.21 VI no. 79/02: seven samples in and outside the oven). The Post-Palatial occupation during LH IIIC Developed (stratigraphic horizon 20) partially reused the walls of Palatial Building XI and consisted of a suite of two rooms with an interior courtyard that was bordered by a terrace wall to the east, which separated this area from the passageway (Fig. 8). At least three mud-

41 Rahmstorf 2015, 146.
42 Maran 2008, 56.
43 Maran 2008, 55 fig. 33.
45 On the frequent occurrence of Cypro-Minoan signs in Tiryns see recently Davis et al. 2014 with further references.
47 For a discussion of the “exotica” concept see Brysbaert & Vettes 2013.
48 See also Maran 2009, 246 figs. 2–3, 247.
49 Again a reused Palatial wall, Maran 2008, 67.
brick ovens cluster in the north and east of the courtyard (Fig. 9).50 Other fragmentarily preserved rectangular clay installations were found near oven no. 79/02.51 The concentration of such mudbrick installations in a single area is without parallel in the Post-Palatial Lower Citadel and, supported by the finds reported from it (especially copper alloy scraps and lead spills),52 suggested these features to be installations for long-lasting and varied pyrotechnological activities. The sampling of the ash from oven no. 79/02 (Fig. 10) set out to test this assumption by determining which materials were burnt in the oven, to probe into what temperatures may have been attained during firing, and whether the archaeobotanical finds might indicate a metallurgical use for this oven.

SAMPLING METHODS

The sediment samples from the baulk in the southern part of Room 10 were collected by archaeologists of the 4th Ephorate of Classical and Prehistoric Antiquities in September 2004. The ashy sediment samples stem from a \(c. \) 10 cm thick layer,

50 Maran 2008, 67–68, figs. 56–57.

51 Maran 2008, 67 fig. 56, no. 78/02, and TN 366; Maran 2008, 67 fig. 56, no. 73/02.

52 Brysbaert & Vettes 2010; 2015, 173–175 with fig. 5; 177 fig. 6.
The archaeobotanical samples from the Lower Citadel North area were retrieved during excavations in 2002 and 2003 as part of a larger sampling programme directed by Professor J. Maran. Samples were taken from every destruction or floor deposit and from any sediment rich in charred remains or organic content, especially from areas with ash concentrations. Two different types of samples were collected: (1) sediment samples (15 from the LH IIIIC Developed oven area and the LH IIIB Final passageway ranging from 4–60 litres) and (2) so-called “archäobotanische Proben” from ash concentrations, i.e. the ashes in and around ovens no. 46/03 and no. 79/02, as well as hand-picked charred wood remains. Macroscopically visible wood charcoal, other charred remains, ash concentrations around the mud-brick installations, and an ostensible destruction ash layer on top of the passageway were specifically sampled to investigate in more detail the pyrotechnological installations and ashes in destruction layers and were stored separately. These 17 samples from the Lower Citadel North (seven from the passageway, nine from oven no. 79/02 and one from oven no. 46/03) were processed for analysis within the Tracing Network (TN) programme that aims to investigate craft and especially pyrotechnological activities in the Lower Citadel in more detail. This paper presents the results of the analyses of all those separately kept archaeobotanical samples, which consisted of c. 0.5 litre of ash sediment and several hand-picked charred wood remains from the clayey matrix on the passageway, c. 6 litres of ash sediment from oven no. 79/02, and a single ash sample from oven no. 46/03 (Table 1). Therefore, we present partial data to complement both our own TN data for more in-depth knowledge of the case studies and Dr Pasternak’s broader work on the archaeobotanical macroremains. Although the sample size is small, the “archäobotanische Proben” actually comprised all ashes found within (and immediately outside) the ovens and the main concentration of charred wooden pieces on the passageway. Despite the small sample size the separately kept samples from the Lower Citadel North area offered the only sediments still available for archaeobotanical analyses (i.e. fruit and seed macroremains, wood charcoal, and phytoliths) and thus allowed the testing of different analytical methods to reconstruct the formation and properties of the respective ashes. The situation was slightly different for Room 10: here, the analysed samples constituted the last chance (because the room had been excavated entirely) to probe into the ash layer and the interpretation of the room’s function based on it. However, one advantage of our samples from the Lower Citadel North area is actually their small volume and their collection from circumscribed and macroscopically easily visible ash concentrations. They stem from either well-protected spaces within the ovens or, when from the oven’s exterior or the passageway, from distinct ash concentrations on floors, where no perturbations were observed during excavation; vertical or horizontal displacement of botanical remains is thus very unlikely. Samples from Room 10 do not stem from such controlled sampling as the baulk area in the southern part of the room had stood exposed for more than 25 years before samples were taken and some vertical displacement of archaeobotanical remains by insect or small animal perturbations may have occurred. However, the large volume of the sample from a mere 10 cm thick layer and the analytical results which are in good agreement with results from other samples (see below) both mitigate against contamination.

The samples discussed in this paper pose several methodological problems but these issues merit being tackled explicitly and in detail, instead of being relegated to appendices that are not well integrated to their main publication reports. We believe that combined analyses of seed and plant remains and anthracological and phytolith studies, which had not yet been implemented in Tiryns, could significantly help fill some gaps in the archaeological interpretation.

Seed/fruit and anthracological remains

A total of 21 samples (sediment and hand-collected charred botanical macroremains) were available for archaeobotanical analyses (Table 1). Of these 15 were sediment samples from ash deposits (eleven were labelled as “archäobotanische Proben” and were collected from the area of the Lower Citadel North and four were recovered from Room 10) (Table 1). The remaining six samples, labelled “Holzkohleprobe”, were collected by hand during the excavation in the Lower Citadel North (Table 1).

The volume of the sediment samples was variable (Table 1). All the samples from the Lower Citadel North were small, their volume ranging from 100 ml to 1 litre maximum. We therefore considered that water sieving with a 300 μm sieve was preferable for these small samples. Larger samples (24–26 litres each) from Room 10 were processed by flotation using the same sieve mesh for the flots while 1 mm mesh size was used for retaining the heavy residues. The flots and the heavy residues, once dry, were sorted for wood charcoal and non-wood charred macroremains. Wood charcoal fragments >2 mm were separated from the flots and heavy residues for anthracological analysis. For non-wood charred macroremains

53 The plastic-bagged sediment samples had already been processed by water flotation and analysed by Dr Rainer Pasternak and will be published separately.

the flots were sorted in their entirety and so were the heavy residues.

In general the macroremains were few (number of items per litre of sediment floated) with the exception of the samples from Room 10. This is certainly related to the small volume of sediment samples from the Lower Citadel North studied in our project. Moreover, in all samples the wood charcoal remains were very brittle and small (mostly <2mm with very few charcoal fragments 2–4mm). This is perhaps the effect of persistent and strong fire that affected the deposits resulting in thick ash concentrations.

The botanical identification of the wood charcoal remains recovered by means of the above-mentioned processes as well as of the “Holzkohleprobe” was carried out at the Tiryns storerooms with an Olympus BH2-UMA metallurgical dark/bright field incident light microscope (X50–X500

<table>
<thead>
<tr>
<th>Location</th>
<th>Context</th>
<th>Description</th>
<th>Sample type</th>
<th>Volume</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>LX 38/100, LXI 38/91.92, LX 39/10, LXI 39/01</td>
<td>Room 10, OM 117</td>
<td>elevation 13.23–13.21/13.11</td>
<td>sediment</td>
<td>26 lit</td>
<td>flotation</td>
</tr>
<tr>
<td>LX 38/100, LXI 38/91.92, LX 39/10, LXI 39/01</td>
<td>Room 10, OM 117</td>
<td>elevation 13.23–13.21/13.11</td>
<td>sediment</td>
<td>24 lit</td>
<td>flotation</td>
</tr>
<tr>
<td>LX 38/100, LXI 38/91.92, LX 39/10, LXI 39/01</td>
<td>Room 10, OM 117</td>
<td>elevation 13.23–13.21/13.11</td>
<td>sediment</td>
<td>24 lit</td>
<td>flotation</td>
</tr>
<tr>
<td>LX 38/100, LXI 38/91.92, LX 39/10, LXI 39/01</td>
<td>Room 10, OM 117</td>
<td>elevation 13.23–13.21/13.11</td>
<td>sediment</td>
<td>24 lit</td>
<td>flotation</td>
</tr>
<tr>
<td>LXIII 35/21 VIF</td>
<td>oven no. 46/03</td>
<td>oven, ash outside</td>
<td>sediment</td>
<td>200 ml</td>
<td>water sieve</td>
</tr>
<tr>
<td>LXIII 35/33 V</td>
<td>passageway</td>
<td>ash</td>
<td>sediment</td>
<td>200 ml</td>
<td>water sieve</td>
</tr>
<tr>
<td>LXIII 35/34 V</td>
<td>passageway</td>
<td>ash</td>
<td>sediment</td>
<td>300 ml</td>
<td>water sieve</td>
</tr>
<tr>
<td>LXIII 35/44 V</td>
<td>passageway</td>
<td>ash</td>
<td>wood charcoal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LXIII 35/43 V</td>
<td>passageway</td>
<td>ash</td>
<td>wood charcoal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LXIII 35/11 VC</td>
<td>oven no. 79/02</td>
<td>ash</td>
<td>sediment</td>
<td>100 ml</td>
<td>water sieve</td>
</tr>
<tr>
<td>LXIII 35/11 VI</td>
<td>oven no. 79/02</td>
<td>northern wall, interior</td>
<td>sediment</td>
<td>100 ml</td>
<td>water sieve</td>
</tr>
<tr>
<td>LXIII 35/11 VI</td>
<td>oven no. 79/02</td>
<td>inside</td>
<td>sediment</td>
<td>1 lit</td>
<td>water sieve</td>
</tr>
<tr>
<td>LXIII 35/11 VI</td>
<td>oven no. 79/02</td>
<td>outside</td>
<td>sediment</td>
<td>900 ml</td>
<td>water sieve</td>
</tr>
<tr>
<td>LXIII 35/21 VI</td>
<td>oven no. 79/02</td>
<td>outside</td>
<td>sediment</td>
<td>800 ml</td>
<td>water sieve</td>
</tr>
<tr>
<td>LXIII 35/21 VI</td>
<td>oven no. 79/02</td>
<td>inside</td>
<td>sediment</td>
<td>a) 700 ml b) 600 ml c) 200 ml d) 300 ml e) 400 ml f) 200 ml</td>
<td>water sieve</td>
</tr>
<tr>
<td>LXIII 35/21 VI</td>
<td>oven no. 79/02</td>
<td>inside</td>
<td>sediment</td>
<td>250 ml</td>
<td>water sieve</td>
</tr>
<tr>
<td>LXIII 35/21 VI</td>
<td>oven no. 79/02</td>
<td>oven, rear wall, interior</td>
<td>sediment</td>
<td>300 ml</td>
<td>water sieve</td>
</tr>
<tr>
<td>LXIII 35/21 VA</td>
<td>oven no. 79/02</td>
<td>surface above/around oven</td>
<td>wood charcoal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
magnification). Schweingruber’s wood anatomy atlas was consulted for comparisons with the archaeological material.55 The wood charcoal pieces were fractured by hand and the three basic anatomical planes, transverse, tangential longitudinal, and radial longitudinal were observed. Some of the specimens were identified to species level56 and others only to genus level due to great anatomical similarity of the species included in these genera. A few specimens were identified to family level while the prefix “cf” was used in those cases where strong similarity to a particular genus or species was observed but the specific anatomical features for the identification were missing. Due to scarcity of macroremains in most sampled contexts, the results of charcoal identifications were missing. The wood charcoal pieces were fractured by hand and the three basic anatomical planes, transverse, tangential longitudinal, and radial longitudinal were observed. Some of the specimens were identified to species level55 and others only to genus level due to great anatomical similarity of the species included in these genera. A few specimens were identified to family level while the prefix “cf” was used in those cases where strong similarity to a particular genus or species was observed but the specific anatomical features for the identification were missing. Due to scarcity of macroremains in most sampled contexts, the results of charcoal identifications were missing. Due to scarcity of macroremains in most sampled contexts, the results of charcoal identifications were missing. Due to scarcity of macroremains in most sampled contexts, the results of charcoal identifications were missing. Due to scarcity of macroremains in most sampled contexts, the results of charcoal identifications were missing.

In the case of Room 10, where wood charcoal macroremains were more numerous, the results are also presented as per-

The non-wood plant remains were identified on the basis of botanical atlases58 and according to the criteria described by Zohary et al.;59 it should be noted that the material is highly distorted and fragmented.

Phytoliths

In total 18 sediment samples (T1–T18; Table 2) have been analysed for phytoliths. These samples consist of: (1) the ashy sediment from Room 10. Four bags with ashy sediment stored in the Tiryns store rooms have been analysed. The sediment from each bag was homogenized and then 1 gram was selected for analysis; (2) ash and clay lumps collected from the interior and the exterior of ovens (oven no. 46/03 and oven no. 79/02); and (3) white sediment remains (ash) collected from the passageway. The samples were analysed at the M.H. Wiener Laboratory of the American School of Classical Studies at Athens. The method implemented is outlined below.60

The sediment was heated in a furnace at 500°C for 4 hours. The ash was dried and weighed in order to acquire the information of the organic loss after ashing. The ash was then transferred in glass vials and treated with 1N HCl in order to remove the calcite. The solution was dried under a heat lamp and weighed. This constituted the acid insoluble fraction (AIF), i.e. the fraction that contains no organics and no carbonates. The AIF was transferred into a centrifuge tube and 5 ml of non-toxic heavy liquid (Sodium polytungstate) solution with 2.4 g/ml density was added. The suspension was soni-
cated for 10 minutes until it was well dispersed. It was then centrifuged at 3,500 rpm for 20 minutes. The supernatant was transferred to another centrifuge tube; 1 ml of water was added and again centrifuged as above. This cycle was repeated once more and then the tube was filled with water for the final centrifugation and wash. In so doing the denser minerals (quartz, clay) were separated from the less dense silica which has a density between 1.5–2.3 g/ml in four stages yielding pel-

lets of minerals greater than 2.4, 2.0, 1.7 and 1.5. The last two fractions that contained all the phytoliths were weighed dry. About 1 mg of each of these fractions was accurately weighed and then placed on two slides. Entellan glue (Merck) was added and cover slips were lowered carefully over the well-
mixed suspensions. The slides were analysed under a petro-

graphic microscope. The assemblages were studied morpho-

tically and quantitatively: phytoliths were counted and taxa were classified. Ideally 200 phytoliths were counted in each slide, when possible, since it has been demonstrated that the counting of 194 phytoliths gives an error of ±23%. The total number of phytoliths on the slide was then determined and related to 1 gram of sediment and 1 gram of AIF.63 In terms of morphology, the assemblage of phytoliths is divided into two major categories: those with consistent morphologies and those with variable morphologies.62 The latter represents in most cases the wood component of a sample.63 Phytoliths with consistent morphologies are classified in families, genera, and species whenever possible as well as the part of the plant involved (e.g. leaves of dicotyledonous [hereafter: dicot] trees or shrubs, grass stems or grass husk-inflorescence, seeds from dicot plants).

Another proxy that was detected in the samples was spherulites. The latter are calcitic spheres formed in animal guts64 and are commonly found in dung remains. For investigating their presence in the samples loose sediment was examined under the microscope before chemical treatment using Entellan glue and a cover slip.

55 Schweingruber 1990.

56 The species Pinus nigra is clearly distinguished from other Pinus species with the exception of P. sylvestris, which is anatomically very similar. However the latter is restricted to the Pireia Mountains and the northernmost mountain ranges of Greece and therefore on ecological grounds could not have possibly grown in the Peloponnese now or in the Bronze Age.

58 Cappers et al. 2009.

59 Zohary et al. 2012.

60 See also Tsartsidou et al. 2008.

61 Albert & Weiner 2001.

62 Albert 2000.

63 See Albert 2000; Piperno 2006; Tsartsidou et al. 2007; 2008; 2009.

64 Canti 1999.
Table 2. Phytolith concentrations per gram sediment; the amount of organic as well carbonate component is shown in the table.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Provenience</th>
<th>Description</th>
<th>Starting grams</th>
<th>Ash grams</th>
<th>Organics %</th>
<th>AIF grams</th>
<th>Carbonates %</th>
<th>Phytoliths/g sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 1</td>
<td>Clay installation/oven inside TI 02 LXIII 35/21 VI no. 79/02</td>
<td>white spots</td>
<td>0.5431</td>
<td>0.4954</td>
<td>8.78</td>
<td>0.3288</td>
<td>30.68</td>
<td>367225</td>
</tr>
<tr>
<td>T 2</td>
<td>Room 10 ομάδα 117 LX 38/100, LXI 38/91.92, LX 39/10, LXI 39/01 13.23–13.21/13.11</td>
<td>grey ashy sediment</td>
<td>1.1226</td>
<td>1.0737</td>
<td>4.36</td>
<td>0.8189</td>
<td>22.70</td>
<td>1931160</td>
</tr>
<tr>
<td>T 3</td>
<td>Room 10 ομάδα 117 LX 38/100, LXI 38/91.92, LX 39/10, LXI 39/01 13.23–13.21/13.11</td>
<td>grey ashy sediment</td>
<td>0.9926</td>
<td>0.9594</td>
<td>3.34</td>
<td>0.7134</td>
<td>24.78</td>
<td>3007858</td>
</tr>
<tr>
<td>T 4</td>
<td>Room 10 ομάδα 117 LX 38/100, LXI 38/91.92, LX 39/10, LXI 39/01 13.23–13.21/13.11</td>
<td>grey ashy sediment</td>
<td>0.9176</td>
<td>0.8852</td>
<td>3.53</td>
<td>0.6471</td>
<td>25.95</td>
<td>2458920</td>
</tr>
<tr>
<td>T 5</td>
<td>Room 10 ομάδα 117 LX 38/100, LXI 38/91.92, LX 39/10, LXI 39/01 13.23–13.21/13.11</td>
<td>grey ashy sediment</td>
<td>0.9605</td>
<td>0.9241</td>
<td>3.79</td>
<td>0.7341</td>
<td>19.78</td>
<td>2310326</td>
</tr>
<tr>
<td>T 6</td>
<td>Room 10 ομάδα 117 LX 38/100, LXI 38/91.92, LX 39/10, LXI 39/01 13.23–13.21/13.11</td>
<td>grey ash matrix of sample T 6</td>
<td>1.1174</td>
<td>1.0645</td>
<td>4.73</td>
<td>0.8191</td>
<td>21.96</td>
<td>2788167</td>
</tr>
<tr>
<td>T 7</td>
<td>Clay installation/oven inside TI 02 LXIII 35/21 VI no. 79/02</td>
<td>clay matrix of sample T 7</td>
<td>0.5395</td>
<td>0.5206</td>
<td>3.50</td>
<td>0.4039</td>
<td>21.63</td>
<td>297225</td>
</tr>
<tr>
<td>T 8</td>
<td>Clay installation/oven inside TI 02 LXIII 35/11 VI no. 79/02</td>
<td>white spots</td>
<td>0.6535</td>
<td>0.6280</td>
<td>3.90</td>
<td>0.3875</td>
<td>36.80</td>
<td>570378</td>
</tr>
<tr>
<td>T 9</td>
<td>Clay installation/oven inside TI 02 LXIII 35/11 VI no. 79/02</td>
<td>clay matrix of sample T 9</td>
<td>1.0529</td>
<td>0.9952</td>
<td>5.48</td>
<td>0.8773</td>
<td>11.20</td>
<td>522785</td>
</tr>
<tr>
<td>T 10</td>
<td>Clay installation/oven outside TI 02 LXIII 35/11 VI no. 79/02</td>
<td>white spots</td>
<td>1.0342</td>
<td>0.9944</td>
<td>3.85</td>
<td>0.7467</td>
<td>23.95</td>
<td>624289</td>
</tr>
<tr>
<td>T 11</td>
<td>Clay installation/oven outside TI 02 LXIII 35/11 VI no. 79/02</td>
<td>matrix of sample T 11</td>
<td>0.7487</td>
<td>0.7171</td>
<td>4.22</td>
<td>0.5661</td>
<td>20.17</td>
<td>40500</td>
</tr>
<tr>
<td>T 12</td>
<td>Clay installation/oven outside TI 02 LXIII 35/21 VI no. 79/02</td>
<td>white spots</td>
<td>0.3513</td>
<td>0.3358</td>
<td>4.41</td>
<td>0.1907</td>
<td>41.30</td>
<td>735968</td>
</tr>
<tr>
<td>T 13</td>
<td>Clay installation/oven outside TI 02 LXIII 35/21 VI no. 79/02</td>
<td>matrix of sample T 13</td>
<td>0.9578</td>
<td>0.9155</td>
<td>4.42</td>
<td>0.6647</td>
<td>26.19</td>
<td>795239</td>
</tr>
<tr>
<td>T 14</td>
<td>Clay installation/oven inside TI 02 LXIII 35/21 VI no. 79/02</td>
<td>all sediment</td>
<td>1.1719</td>
<td>1.0407</td>
<td>11.20</td>
<td>0.7073</td>
<td>28.45</td>
<td>847742</td>
</tr>
<tr>
<td>T 15</td>
<td>TI 03 LXIII 35/21 VIF no. 46/03</td>
<td>ash inside oven</td>
<td>1.0569</td>
<td>1.0384</td>
<td>1.75</td>
<td>0.4380</td>
<td>56.81</td>
<td>45830</td>
</tr>
<tr>
<td>T 16</td>
<td>TI 02 LXIII 35/33 V passageway</td>
<td>ash and charcoal scratched from the surface of clay chunks</td>
<td>0.9603</td>
<td>0.8550</td>
<td>10.97</td>
<td>0.5924</td>
<td>27.35</td>
<td>118784</td>
</tr>
<tr>
<td>T 17</td>
<td>TI 02 LXIII 35/34 V passageway</td>
<td>white spots (not very clean)</td>
<td>0.5251</td>
<td>0.5140</td>
<td>2.11</td>
<td>0.3041</td>
<td>39.97</td>
<td>157332</td>
</tr>
<tr>
<td>T 18</td>
<td>TI 02 LXIII 35/34 V passageway</td>
<td>yellowish clay matrix with ashy parts of T 17</td>
<td>1.0538</td>
<td>1.0308</td>
<td>2.18</td>
<td>0.8361</td>
<td>18.48</td>
<td>373392</td>
</tr>
</tbody>
</table>
Results

The seeds present in the assemblage are very limited in number, although they represent a wide range of cereals, pulses, fruits, and nuts, and also wild species (see Table 3). More particularly, cereals are represented by barley (Hordeum sp.), emmer (Triticum dicoccum), pulses by lentils (Lens sp.) and bitter vetch (Vicia ervilia), fruits by olive (Olea europaea), grape (Vitis vinifera), and fig (Ficus carica), nuts by almond shells (Prunus amygdalus), and wild species only by darnel (Lolium temulentum). All the material is very fragmented most likely due to the exposure to high temperatures.

In the case of the anthracological samples presented here, their correlation with the content of ovens and ash deposits inside buildings and/or on top of floors obviously reflects short-term use and specific activities, e.g. firewood use or construction. Table 3 presents the plant taxa identified in each one of the four different contexts sampled in the Lower Citadel North and the vegetation types (according to modern vegetation maps and surveys)\(^{65}\) to which they correspond. At least ten arboreal taxa were identified in the sampled contexts: Abies sp. (fir), Pinus nigra (black pine), Olea europaea (olive), Prunus amygdalus (almond), Fabaceae (woody shrubs of the pulse family), Maloideae (small trees of the wild pear family), Ficus carica (fig), cf. Fraxinus sp. (ash), deciduous Quercus sp. (deciduous oak), and evergreen Quercus sp. (evergreen oak). They are all native to the Peloponnese representing different vegetation types and bioclimatic zones as well as cultivated trees. The lowland and coastal areas would have been characterized by thermomediterranean, sclerophyllous forests with xerophytic scrub in which olive, evergreen oaks, small trees of the Prunus and Maloideae, and shrubs of the Fabaceae would have grown among others. Mesomediterranean woodland with evergreen oaks and xerophytic scrub would have grown on the hinterland hills and the lower parts of the mountain slopes. Deciduous oaks would have also grown in these wood-

Table 3. Results of anthracological analysis of investigated contexts in the Lower Citadel North; identified taxa and their absolutely frequency are shown and the vegetation types to which they correspond are indicated.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Room 10 Inside</th>
<th>Room 10 Outside</th>
<th>Passageway</th>
<th>Oven no. 46/03 Inside</th>
<th>Oven no. 46/03 Outside</th>
<th>Oven no. 79/02 Inside</th>
<th>Oven no. 79/02 Outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies sp.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cf. Abies sp.</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus nigra</td>
<td>35</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td>112</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus amygdalus</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabaceae</td>
<td>16</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maloideae</td>
<td>6</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus spinosa/P. amygdalus</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus sp. evergreen</td>
<td>4</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus sp. deciduous</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus sp.</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cf. Fraxinus sp.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ficus carica</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cf. Ficus carica</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angiosperm</td>
<td>9</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conifer</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bark</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidentifiable</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>197</td>
<td>20</td>
<td>2</td>
<td>13</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
lands and probably other deciduous trees such as ash. Fir and black pine would have grown in the supra- and oromediterranean forests of the higher mountain ranges to the north-west (Kyllini, Oligyrtos, Farmakas, and Lyrkeion), west-south-west (Mainalo and Artemision) and south (Parnon). The majority of the taxa could have easily been procured from the surroundings of the site to serve various purposes. However, taxa such as Pinus nigra and Abies, the montane conifers, were non-local to the site and its surroundings but brought to Tiryns, located near the coast, from the mountains. The results for each of the sampled contexts are presented separately in Tables 4–6.

The analysis of the phytolith samples provides quantitative and qualitative data. Table 2 shows the quantitative data including the number of phytoliths per gram of sediment, the organic and carbonate component (percentages). The qualitative data are shown in Figs. 15–19, 22, and 24 (see below). In the following section, the results of the non-wood archaeobotanical macroremains, anthracological and phytolith analysis for each of the sampled contexts are presented separately.

ROOM 10

The nature of the non-wood plant assemblage in Room 10 differs from Kroll’s previous analyses, as no cereals, pulses, or crop processing residues are present. Instead, only fruits were attested: grape, olive, and figs come from four samples and were retrieved by flotation from the thick ash layer in this

Table 4. Results of anthracological analysis in Room 10.

<table>
<thead>
<tr>
<th>Samples</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total Room 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abies sp.</td>
<td>1</td>
<td>1</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabaceae</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>16</td>
<td>8.21</td>
</tr>
<tr>
<td>Maloideae</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>6.308</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>18</td>
<td>39</td>
<td>23</td>
<td>112</td>
<td>57.44</td>
</tr>
<tr>
<td>Pinus nigra</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>9</td>
<td>35</td>
</tr>
<tr>
<td>Prunus amygdalus</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Prunus spinosa/P. amygdalus</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Quercus sp.</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2.56</td>
</tr>
<tr>
<td>Quercus sp. evergreen</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2.05</td>
</tr>
<tr>
<td>Angiosperm</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>4.62</td>
</tr>
<tr>
<td>Conifer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>59</td>
<td>60</td>
<td>46</td>
<td>195</td>
</tr>
<tr>
<td>Unidentifiable</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Results of anthracological analysis from the passageway and oven no. 46/03.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>LXIII 35/33 V</th>
<th>LXIII 35/34 V</th>
<th>LXIII 35/24 IVH</th>
<th>LXIII 35/34 IVH</th>
<th>LXIII 35/44 V</th>
<th>LXIII 35/34 VA</th>
<th>LXIII 35/43 V</th>
<th>Total LXIII 35/21 VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies sp.</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cf. Abies sp.</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ficus carica</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cf. Fraxinus</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olea europaea</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus sp. deciduous</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus sp.</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conifer</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bark</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
basement room. The samples come from the same context and therefore the material has been amalgamated into one sample (Table 7).

The recovered archaeobotanical remains are likely to represent food residues from the floor of the room and come from fruit trees that most likely existed in the vicinity of the site, as suggested by both the charcoal data from the site, and by the pollen analyses from the wider area of the Peloponnese.66 The fragmentation of the material but also its limited number does not allow any attempt to determine whether the grape and olive belong to the wild or domesticated variety, although studies based on numerous materials have advanced the research on the topic.67 The olive remains did not appear to be crushed in antiquity, on the basis of the criteria established by Margaritis and Jones,68 and their numbers are too low to suggest processing for olive oil and their subsequent use as fuel. However, during the Late Bronze Age it is most likely that cultivated plants prevail, which by then played a major role in the economy and agriculture of Mycenaean society.69 Their intensive cultivation however began much earlier.70

Anthracology

Four samples from Room 10 revealed the presence of at least six taxa in the anthracological study. Table 4 shows the presence and absolute abundance of the identified taxa in each one of the sediment samples. Three taxa, namely *Olea europaea*, Maloideae, and *Pinus nigra* are present in all the samples while evergreen *Quercus* sp., Fabaceae, and *Prunus* are present in three out of four samples. *Abies* appears in only

67 See the discussion in Kroll 1982, 477 fig. 1, 1. 7; 479, 480 fig. 2; 481 fig. 3; Kroll 1984, 211, 215–217, which is based on a larger sample; Pagnoux et al. 2015; Braadbaart et al. 2016.

68 Margaritis & Jones 2008.

70 Margaritis 2013.
one sample. In absolute fragment counts, *Olea europaea* is by far the most abundant taxon in all four samples, followed by *Pinus nigra* and Fabaceae. Total absolute and percentage fragment counts for each one of the identified taxa in the samples of Room 10 document the same order of dominance with *Olea* (57.44%) dominating the assemblage followed by *Pinus nigra* (17.95%) and Fabaceae (8.21%).

The anthracological assemblage of Room 10 shows a combination of taxa that represent two or three very different vegetation types (Fig. 11). The anatomical characteristics of the wood of *Olea europaea* do not allow the differentiation between the domestic and the wild type. At present *Olea europaea* is a characteristic element of lowland coastal areas of the Peloponnese (the thermomediterranean zone). However, the presence of the wild olive during the early part of the Holocene in the broader Aegean area is not clearly defined. Wood charcoal analyses document the absence or very sporadic appearance of *Olea* only during the Late Neolithic even in the southernmost part of the Peloponnese such as Alepotrypa Cave. The taxon becomes conspicuous in the pollen record of southern Greece and the Aegean only from the end of the Neolithic onwards and during the Bronze Age. Relevant to this discussion is the absence of *Olea* non-wood macroremains from Neolithic contexts in the Peloponnese and the prominent presence of both wood charcoal and stones in the Early Bronze Age site of Kassaneva, Achaea. It has been suggested that either olive was introduced or that it existed in very low numbers in Pleistocene refugia and its role became prominent with the onset of the cultivation of the tree. It is therefore possible that natural (late expansion from refugia) and anthropogenic (management, cultivation) factors played their role in the proliferation of the tree in the landscape after the Neolithic, even more so given the easiness with which *Olea* produces feral forms in the wild. The overall abundance of the taxon in the samples from Tiryns suggests that olive wood could have been collected from the wild and/or from prunings of cultivated orchards. Fabaceae, Maloideae,
evergreen Quercus, and Prunus would have been characteristic of the natural open vegetation around Tiryns and their wood would have been collected from the wild for various purposes. Pinus nigra and Abies, the montane conifers that represent the mountain vegetation of high altitudes in the Peloponnese, would have been brought to the settlement from the mountains closest to the site (e.g. Farmakas, Lyrkeion, and Artemision) that could have hosted fir/black pine forests according to modern vegetation data. The distance to the timber procurement areas was considerable (minimum c. 30 km in straight line) but transportation could have been facilitated if the river systems (e.g. Inachos) that flowed towards the Argolic Gulf were used.

The presence of wood charcoal macroremains and a thick ash deposit on top of the floor in the basement Room 10 may suggest the collapse, due to burning, of some wooden structure—possibly the wooden frame of the ceiling and/or an upper storey. Furthermore, wooden objects or furniture inside the room may have also been burnt and reduced to wood charcoal and ashes. Therefore, the taxa identified in the samples from Room 10 could represent the remains of construction timbers, other construction elements, and/or objects or furniture. It is difficult by the taxa alone to specify uses. However, the presence of non-local timbers such as black pine and fir, procured and transported from a considerable distance, indicates deliberate selection for specific purposes. Black pine and fir have straight, long trunks that may grow to more than 20 m at maturity, especially when they grow in closed forests, and their wood is suitable for roof beams and poles. Olive wood is abundant in the samples, probably because it was easily procured locally and because it was routinely used as fuel and timber. It is possible therefore that black pine and occasionally fir timber would have been used for the long beams of the roof/ceiling/upper storey, while olive wood could have been used for the shorter poles of the roof. Shrub taxa such as the Fabaceae may have filled the space between poles and/or beams, thus creating a thick, solid layer for an upper storey or ceiling, which if additionally covered with plaster, would have protected the building from humidity and adverse weather conditions. All other tree taxa, like evergreen oak, Prunus, and Maloideae could

80 On the transportation logistics of heavy duty building materials and resources in Tiryns, see Brysbaert 2015.
Fig. 13. The organic component of the sediments analysed; the dark spotted columns show the presence of spherulites; the grey columns show absence of spherulites.

Fig. 14. The carbonate component of the sediments analysed; light grey columns are for ashy sediment and dark grey is for clay lumps.
have also been utilized as construction timbers, for different other parts of the structure, e.g. door frames, or furniture and objects, e.g. shelves. Nevertheless, it is possible that in this destruction layer fuel wood waste was also mixed with the remains of timber.

Phytoliths

Quantitatively, the four ashy samples of Room 10 (T2–T6) are quite similar to one another. They are in the same order of magnitude ranging from 2 to 3 million phytoliths per gram sample (Fig. 12). Their organic as well as carbonate component is also very similar and moderate in frequencies (Figs. 13–14). They range from 3–5% and 20–26% respectively. All are much richer compared to the samples from the ovens. They also preserve rich accumulations of faecal spherulites (Fig. 13) indicating the presence of dung.

Qualitatively, the ashy sediment samples of Room 10 are also similar to one another. They preserve mostly grass phytoliths (above 90%) and very small amounts (up to 4%) of dicot leaf phytoliths (Fig. 15). Small frequencies of cereals (up to 2%) and higher frequencies of wild grasses (up to 9%) have been recovered (Figs. 16–17). The cereals identified belong mostly to *Triticum* sp., *Hordeum vulgare* has been identified only in T2. Among the wild grasses Festucoids, Chloridoids, and Panicoids have been identified (Fig. 18). The Chloridoids are almost equally preserved (4.5–4.7%) with the exception of T2 (2%). With regard to the identified grass parts we notice that stem (grass straw) phytoliths dominate the samples (Fig. 19). The frequencies of stem phytoliths are almost equal (37–38% in all samples except 31% in T15). The frequencies of the husk (grass inflorescence) phytoliths are also very similar to one another (16–18%). This shows that the grasses have been incorporated into the sedimentary matrix either as a domestic material (roof cover, fuel, basketry) or with the dung of free-ranging animals that have eaten the whole plant supplemented with straw fodder.

Figs, olives, and grapes do not inherently have higher rates of preservation than other plant remains such as cereals or pulses, because the fruits could have been eaten fresh. The presence of only those species in Room 10 is connected with the consumption or storage of these specific crops there, indicating perhaps a lack of cooking in the room, required for cereals and pulses. The major difference between the new analyses and Kroll’s data is the lack of cereal macroremains in the new seed samples. Animal faeces could also incorporate some of these retrieved remains, since the phytolith study and most specifically the presence of spherulites indicated dung in the ash layer of the room. The room may have been used
Fig. 16. Frequencies of cereal husk phytoliths recorded in the sediments.

Fig. 17. Frequencies of wild grass husk phytoliths recorded in the sediments.
Fig. 18. Frequencies of Chloridoid and Panicoid/Arundinoid grass subfamilies recorded in the phytolith assemblages.

Fig. 19. Frequencies of phytoliths identified in the sediments produced by stem/leaf and inflorescence (husk) of grasses.
for dung storage or dung could have been used either as fuel, or as building material. We favour the second interpretation: Room 10 was a very confined basement room and a transitory area in the rear of Building Complex A, away from the main entrance. It nevertheless possesses two monolithic thresholds (Fig. 3), one in the door to Room 9 and one in the door to Room 7, which constitute elaborate architectural features only witnessed in elite buildings in the Lower Citadel. The use of non-local timbers would befit the overall high-quality architecture of Building Complex A, either in construction timbers for the ceiling which supported an upper storey, or for the door frames or wooden doors to which the monolithic thresholds at the northern and southern side of Room 10 attest. The identification of dung by the phytolith analyses may be explained as secondary use of waste products in construction material, i.e. the use of dung as insulating material in ceilings or upper storey floors.

PASSAGEWAY

The second area where plant remains were retrieved is the passageway, east of the Final Palatial Building XI, where only olive stones were recovered in a very fragmented state (Table 7). Their fragmentation is the result of post-depositional processes, because the olive stones evidence “modern” breaks, they are present in very limited numbers representing a mere handful of olives.

Anthracology

Seven anthracological samples from the last Palatial horizon (LH IIIB Final) in the area of Building XI were recovered from an ash layer on top of the passageway. They were analysed and, despite the small number of macroremains of a size suitable for identification, at least five taxa were identified (Table 5). Except for cf. Fraxinus and Ficus carica that appear only in this deposit, all other taxa are also present in partly contemporary Room 10 (dated to LH IIIB Developed and Final), in the nearby but earlier oven no. 46/03 as well as in the later, Post-Palatial oven no. 79/02. The presence of fir and deciduous oak wood charcoal in this deposit indicates that it probably represents destruction debris of architectural structures. Following the same reasoning as in the case of Room 10 it seems logical to interpret the presence of the non-local taxa, such as fir, in relation to construction timber deliberately selected for building material rather than for fuel.

Phytoliths

The three samples for phytolith analyses that come from this area are T16–T18. T16 is charcoal and ash sediment removed from the surface of a clay lump and T17 is white ash on top of T18 that is again a clay lump. T17 and T18 share many similarities but they differ from T16. T16 has the highest component of organic matter (11%) with the other two not exceeding 2%. No spherulites have been recorded in any of the three samples. The carbonate component is relatively high (27–40%) in the two ashy sediments and lower in the clay lump (18%). The grasses dominate samples T16 and T18 (almost 100%) as opposed to T17 that preserves only 58%, i.e. the lowest amount of grasses of all analysed samples. It preserves 11% dicot leaf phytoliths as opposed to T16 and T18 that did not produce more than 1%. Among grasses the wild ones prevail. The higher frequency is shown in the clay lump sample indicating the admixture of clay sediment with ash where grasses might have been used as kindling and possibly everyday waste such as food remains or discarded wild grasses used for construction or pastoral purposes. No cereals have been recorded in the clay lump as opposed to the ash samples that preserve small amounts. Stem phytoliths are recovered in much larger percentages than the husk phytoliths indicating that the grasses were mainly used as tinder and only small amounts may be related to food remains (wheat). Finally palm (Palmae sp.) phytoliths have been recorded in sample T16 and T17 (Figs. 20–21). The higher frequencies are recorded in T16 (28%).

The high amount of clayish matter could perhaps indicate some disintegrated mudbrick or pisé. Grass stems in the phytolith analysis may point to mudbricks or pisé heavily tempered with organic matter. Kilian interpreted the associated pottery assemblage as part of collapsed destruction debris from Building XV on the east side of the passageway, whereas Maran explicitly noted that the breakage pattern of these ceramics did not indicate that they had fallen down from an upper storey. Furthermore, Building XI on the west side of the passageway was probably a single-storey structure and lay on a lower terrace; it thus seems more probable that any inventory of Building XI collapsed onto the floors of this building rather than onto the passageway. At present, it cannot be determined from where the idiosyncratic finds assemblage on the passageway originated. Some of its constituents (i.e. the wall brackets and the faience head-shaped vessel) point to Building XI but the location of the finds makes their association with Building XV more likely.

OVEN NO. 46/03

The oven sample contained ash and charcoal but no macroremains of fruits and seeds were detected. Therefore, the results obtained derive from the anthracological and phytolith analyses only.
Fig. 20. Frequencies of palm phytoliths identified in the assemblages.

Fig. 21. Microphotograph of palm phytoliths from sample T17; the arrows point to spiny spheroid phytoliths characteristic of Palmaeae; photograph by G. Tsartsidou.
Anthracology

Two wood charcoal fragments, one of *Olea europaea* and another one from deciduous *Quercus* sp. were identified in oven no. 46/03 (Table 5), the chronologically earliest pyrotechnological feature sampled in the Lower Citadel North, dated to LH IIIB Early/Middle. Their provenance from the ash deposits in the oven indicates that these are the remains of the fuel burnt in the latest or one of the latest uses of the feature. The wood of these taxa could have been systematically procured from woodland vegetation of the hills (>200 m altitude) surrounding the Argive Plain or from olive orchards.

Phytoliths

Quantitatively, the phytoliths from the oven samples are poorer than the samples of Room 10 (Fig. 12). Most of them range between 400,000–850,000 phytoliths per gram sediment. The poorest are samples T11 and T15 that preserve less than 50,000 phytoliths per gram sediment. Sample T15 comes from the interior of oven no. 46/03 and contains the ash that has the highest frequency of carbonates (60%) of all the samples analysed. This indicates the presence of wood as a major component of this sample. No spherulites were identified and the organic component is the lowest (2%). The highest amount of molten phytoliths (28%) has been recorded in this sample (Fig. 22) in contrast to all the remaining samples that do not exceed 3% of molten phytoliths. These data point to a strong fire fed with wood. The low number of phytoliths is very compatible with this since woody parts of trees produce either no phytoliths or very small concentrations. The sample is also rich in druses, i.e. carbonate crystals that are formed in high quantities in dicot plant leaves. Phytoliths of the latter have also been identified in large quantities (19%).

Regarding grasses, T15 preserves the highest quantity of wild grasses (15%), mainly Chloridoids and stem (straw) phytoliths. They may have been used as kindling to start the fire. Minor amounts of cereal husk phytoliths are also present. No sedges or reed phytoliths have been recorded.

The small finds around oven no. 46/03, mostly obsidian in low numbers, do not provide evidence for the structure’s use in specific metallurgical activities since no metal artefacts, slag, or crucible fragments were retrieved from this context.

Also, use as a pottery kiln is unlikely, because no ceramic wasters were found and the architecture of the oven does not resemble known examples of contemporary pottery kilns which feature chequer floors. Other hypothetical uses, for instance limestone heating to produce quicklime, or charcoal production, are also not supported by the associated archaeological finds. The fuel remains, however, indicate that high temperatures could have been attained. Wood burning can reach up to 800°C irrespective of the species employed. If we were to look for a direct link between the contextual finds and the oven, the heat treatment of chipped stone in order to facilitate splitting and cracking of the core of such raw material could, for example, be suggested. However, to our knowledge, such treatment has never been recorded in Mycenaean contexts, heat above $200–400^\circ\text{C}$ is not needed or desired for heat treatment of lithics, and when reaching 600°C and higher, adverse effects such as micro-cracking and thus reduced mechanical strength and fracture toughness result. Instead a prolonged and well-controlled heat with well-monitored cooling is crucial to achieve the best results.\(^{84}\) The literature on heat treatment also seems to indicate that especially flint and chert were undergoing such treatment because they may obtain a higher level of flakeability that renders such materials approximately to the same flakeability levels that obsidian already has in itself.\(^{85}\) We cannot rule out that there is an operational relationship between the handful of lithics and the oven although an indirect relation is the most we can hypothesize until much larger assemblages of oven features can be examined.\(^{86}\)

The oven might have been involved in certain production processes that required high temperatures, at least for short time stretches, but it remains to be seen what sort of activities these would have been. Finally, in relation to this specific study, it is doubtful whether the few cereal remains in the ashes of the oven are numerous enough to interpret the feature as part of a food preparation area.

OVEN NO. 79/02

The samples from the inside and outside of oven no. 79/02 located in the courtyard represent the Post-Palatial use of the area of former Building XI during LH IIIC Developed. The assemblage consists of small fragments of barley and emmer grains, emmer chaff, bitter vetch and lentils, grape pips, minute parts of olive and almond stones, and fragments of darnel; all of them come from two samples collected during the excavation (Table 8).

The presence of these plant remains could represent food remains. Barley and emmer are processed and often consumed differently. Emmer wheat is a glume wheat, thus chaff needs to be removed before consumption, most likely by pounding or light parching. Barley is a free threshing cereal, thus requiring little processing following threshing. This means that the processing of emmer wheat (together with einkorn and spelt) is more laborious than barley. Cereals undergo specific stages of processing which have a logical order: for example winnowing cannot precede threshing, and sieving needs to come after winnowing (Fig. 23).\(^{87}\) On the basis of the relative proportions of grain, chaff, and wild/weed seeds, archaeobotanical assemblages can be assigned to various crop processing stages, and, therefore, we can obtain information on agricultural practices. For example, on the basis of their properties (size, weight), different weeds are removed in different stages of crop processing, others are removed by winnowing or sieving.\(^{88}\)

Most likely, the removal of emmer chaff was done piece-meal during the year, on the basis of the inhabitants’ needs. The presence of emmer chaff in the oven indicates the use of this cereal for human consumption, because otherwise the laborious activity of removing the chaff would not be necessary.

The presence of darnel is also linked to the final stages of crop processing. This weed has a size similar to cereal grains, and, therefore, is removed from the grain at the very last stage of processing before human consumption, which is cleaning by hand sorting.

\(^{84}\) Domanski et al. 1994, 201–202, 204–205.

\(^{86}\) A point strongly advocated by the anonymous reviewer that we gratefully acknowledge.

\(^{87}\) Stevens 2003.

The presence of emmer chaff and darnel in the oven points to the utilization of these by-products of cereals’ crop processing as fuel.\(^8\) A similar interpretation can be suggested for the olive and almond too; olive stones are perfect for fuel due to the fact that they can reach high temperatures and can burn for a long time, while they produce little smoke.\(^9\) The other remains, cereals, fruits, nuts, and pulses represent refuse of food consumption entering the oven most likely as remnants of food prepared and cooked in the oven.

The presence of bitter vetch, however, requires more attention. Bitter vetch is toxic and during the ripening of the seeds an acid is formed that renders the seeds toxic for both animals and humans. The amount of the acid in the seeds depends on both environmental and genetic circumstances, and toxicity rises under conditions of drought. In order to remove the toxins it contains, bitter vetch, therefore, needs more processing, through soaking, roasting, and removal of the seed coat.\(^{91}\) In this way, bitter vetch is more labour-intensive than other pulses such as lentils or peas. Because of its toxicity it has been suggested that it might have been used as famine food or fodder, but it is probably also used for human consumption since the Neolithic.\(^{92}\) It is also depicted on a Late Minoan wall painting found in Building 6 at Palaikastro, east Crete.\(^{93}\)

Anthracology

The mudbrick structure of oven no. 79/02, located in the courtyard of a Post-Palatial building on top of Building XI, is one of the installations that suggest an intensive use of the area during LH IIIC Developed. The results of the analyses of anthracological samples from oven no. 79/02 are presented in Table 6. Two of the samples did not include any remains large enough for identification. In the remaining samples the identified taxa are the same as in Room 10 and the passageway. In general, both the samples from the outside and the inside of the feature are characterized by a paucity of remains, most probably due to heavy burning that consumed wood and embers almost completely. Both the samples inside and outside the oven include at least five taxa each; they have remains of

\(^{8}\) For information on the formation of an archaeobotanical data set and possible interpretations see van der Veen 2007.
\(^{9}\) Brun 2003.
\(^{91}\) Flint-Hamilton 1999, 25.

\(^{92}\) Valamoti 2004. For evidence of bitter vetch found in Aigeira see Schachl 2006, 191–192. We thank Walter Gauß for this reference.
\(^{93}\) MacGillivray et al. 1992; on the analyses of its pigments and plaster: Brysbaert 2008.
Abies sp., Olea europaea, and Quercus sp. in common while Fabaceae, deciduous and evergreen oak, cf. Ficus carica are present inside the oven, and Maloideae and Pinus nigra occur outside it. The majority of the taxa as can be seen in Table 3 would have grown in the lowland areas around the site and their wood may have been collected from the natural vegetation or as prunings from the olive orchards. In such a case it would be logical to regard them as the remains of the fuel used in the oven. However, the presence of the mountain conifers in the assemblage is intriguing; the time and effort needed to bring wood from a distant location cannot be justified by their use as fuel unless they correspond to timber waste from timber shaping for carpentry. Furthermore if we consider that the calorific properties of wood are mostly controlled by factors such as calibre, state of wood, and humidity content rather than by the properties of the particular species, wood from the natural lowland vegetation could fulfil the purposes of the ovens and there would be no need for distant procurement of fuel wood. Moreover, qualitatively speaking, the results from oven no. 79/02 are almost identical to what we observed for Room 10. Following the same reasoning as in the case of Room 10, the combination of thermophilous taxa and mountain conifers could again indicate the destruction of a wooden superstructure by burning. Taking into consideration that feature no. 79/02 overlies the destruction layer of Building XI, we may consider three possibilities:

1. timbers from earlier structures were recycled as fuel in this oven;
2. the ash deposit observed in the oven superimposes and includes remains of the underlying destruction layer;
3. mountain conifers constituted parts of furniture finally disposed of as fuel in the oven.

In stratigraphic terms, oven no. 79/02 was erected on the “floor” or well-trodden surface of the LH IIIC Developed courtyard and thus c. 10 cm above the LH IIIB Final floor of Room 04/02 in the underlying Building XI. As the ash was clearly found on top of the courtyard’s "Laufhorizont”, it does not seem that parts of the destruction layer at the end of the Palatial period (i.e. ash and charred timbers from collapsed architectural structures) were mixed with the LH IIIC Developed oven’s ash deposit. A recycling of earlier building timbers, perhaps even from the decades’ earlier Palatial destruction, may have been a possibility. The LH IIIC Developed courtyard area retained several Palatial walls in its layout. The Post-Palatial reuse of these walls built in LH IIIB Final comprises at least their stone foundations and socles; whether parts of the mudbrick and timber superstructure were still extant, is unknown. Yet with regard to the extensive building activities in the Lower Citadel and Lower Town North in the first half of the 12th century BC it appears also feasible that the LH IIIC community in Tiryns still procured construction timbers from distant mountain ranges, which after changes in building layout and even potential recycling in other architectural structures may finally have been used as fuel. Also, the final combustion of parts of disused furniture as fuel cannot be excluded.

Phytoliths

Samples T1, T7–T14 come from the area inside (T1, T7–T9 and T14) and outside (T10–T13) the oven. The samples T1, T8, T10 and T12 are white ashy spots preserved on clay lumps representing the ash from the oven. The samples T7, T9, T13 are clay lump samples. Sample T14 is a mixture of ash and clay sediment. Irrespective of the provenance of the samples (i.e. inside or outside the oven) they show similar results, quantitatively and qualitatively. It is obvious that the ash samples contain more carbonate (calcite) than the clay ones since calcite is the main component of ash. Nevertheless, the clay samples also preserve high amounts of carbonates suggesting that ash was used in their construction as an admixture. Interestingly, spherulites have been identified in all the clay lump samples but only in one ash sample (T10). This means that dung was mixed with the clay in the construction of the clay structure/ floor but it was probably not used as fuel.

Qualitatively we notice that the samples are dominated by grass phytoliths recovered almost to 100%. The samples that preserve lower percentages of grasses are the ones that preserve higher percentages of dicot leaf phytoliths. These are mainly samples T8 and T9. All of the samples preserve both small quantities of cereals (only Triticum sp.) and higher amounts of wild grasses (Chloridooid and Panicoid). Straw phytoliths prevail with the exception of T12 which represents an ashy layer remains of Building XI immediately after the Final Palatial catastrophe or very soon afterwards: Maran 2008, 60–65. This pit was sealed by the compact, well-trodden surface of the courtyard area with the ovens in LH IIIC Developed.

A Post-Palatial reuse of earlier, Palatial walls is witnessed in the case of Building XI, former Building VI in the western centre of the Lower Citadel and in parts of the Palatial megaron on the Upper Citadel, but is always accompanied by a change in layout; see Mühlenbruch 2013, 57–60, 73–77, 258–259.
from the area outside the oven. We notice high frequency of husk phytoliths in sample T12.

Other plants identified were sedge and reed phytoliths (Fig. 24). They have been identified in almost all the samples but the sedges recovered from T9, i.e. from the interior of the oven, are very high (10%). These phytoliths belong most possibly to *Scirpus* sp. and they could indicate the presence of household material such as a basket or mat made of the flexible stems of this riverine plant. Nevertheless, the sample is a clay lump and preserves a large variety of plants including a large percentage of dicot leaf phytoliths (11%). The ash and clay lumps were sampled from the north wall of oven no. 79/02. This favours an interpretation of the phytoliths stemming from burnt organic material in the mudbricks rather than burning refuse of everyday activities in the oven. However, the ongoing analyses of the Tiryns ovens examined in this paper may add to this discussion.

The LH IIIC Developed courtyard features tentative evidence of a well-organized activity area perhaps even with re-established wide-ranging external contacts to Cyprus, if a clay ball with Cypro-Minoan signs is not a residual find but was originally deposited during this phase.97 Within the last decade research has provided ample evidence that LH IIIC Tiryns witnessed not only the re-establishment of contacts with the wider Eastern Mediterranean region (albeit on a lesser scale than in the Palatial period) but also the construction of several large buildings such as Building T on the Upper Citadel and Megaron W in the Lower Town.98 Therefore, it may not have been beyond the capacities of the Post-Palatial occupants of this area in the Lower Citadel North to procure such building material from the mountains of the Peloponnese instead of only recycling construction wood from the Palatial period. The space differs from other Post-Palatial activity areas because the concentrations of ovens are not a feature of any domestic space (single box-ovens inside rooms are also rare) so far discovered in Tiryns. The multiple ovens in the courtyard, therefore, indicate some quite intense or prolonged pyrotechnological activities beyond mere food production. Fireplaces in the Post-Palatial period are usually circular clay structures with an underlying sherd layer and a clay layer on

97 For a discussion of the find spot and dating see Vette 2011.
98 E.g. Maran 2012a; 2012b, 158–160; Mühlenbruch 2013.
top. Such hearths/fireplaces are common features (often interpreted as places of cooking but they could have been used for other crafts as well), found inside and outside buildings and in some instances are rebuilt several times on the same spot or adjacent to one another. The attestation of lead spills immediately next to oven no. 79/02 in the spatial analysis of the small finds excavated in the courtyard points to small-scale lead-working; the archaeological data complement this picture and suggest a more multifunctional use of the feature for metallurgical activities as well as food production.

Discussion

The results of the anthracological analysis from four different contexts at the Lower Citadel North in Tiryns allow us to provide tentative reconstructions of the natural vegetation in the vicinity of the site and its management during the latter part of the LH period along with suggestions for the possible provenance (and related use) of the burnt wood macroremains in the different contexts at Tiryns. Kroll has interpreted the low density of charred plant remains as the result of regular cleaning activities of a highly organized settlement indicating how refuse was managed and organized within urban spaces. In our case, an additional contributing factor has been the small number of samples and the impact of taphonomic factors because in the areas studied the plant remains are scarce possibly due to exposure to high-temperature fires: in all of the areas ashy layers were present, and charred plant remains were very fragmented and distorted. This effect is slightly mitigated in the case of olives because their stones are hard and more resilient to high temperatures.

Our results combined with previous studies from Tiryns show an assemblage rich in taxa, which represent different woodland habitats (Table 3) that, at present, have their parallels in the vegetation of the Peloponnesian coast to the higher mountains. Based on the modern ecology of these taxa it is, therefore, possible to suggest a tentative distribution of the identified species both in the local environment around Tiryns as well as in the broader area of the Argolid and north-east Peloponnesian during the LH period. To this end, the information from various pollen cores from this region, i.e. Lerna, Koilada, Kleonai, and the Kotihi lagoon in the north-western Peloponnesian is indispensable.

The taxon *Olea europaea* may include the wild oleaster and the cultivated variety, but a distinction between the two on the basis of wood anatomy is not possible. At present, the olive is indicative of the vegetation characterizing the thermomediterranean bioclimatic zone that includes the coastal areas of the Peloponnesian. The presence of the olive in all sampled contexts is in agreement with the location of the site in the coastal Argolid, where the prevalent environmental conditions would have favoured both the spontaneous growth of olive trees and shrubs and olive cultivation in orchards. *Prunus amygdalus* could have also been a cultivated tree but also an element of the natural vegetation growing, together with *P. spinosa*, various Fabaceae and the Maloideae, in open woodland under conditions of prolonged summer aridity.

Evergreen *Quercus* could have grown locally in the thermophilous vegetation but would have also formed part of the mesomediterranean woodland expanding towards the hinterland. Deciduous *Quercus* and *Fraxinus* may also have grown in such formations in which Fabaceae and Maloideae could have constituted the understorey. Deciduous *Quercus* would have been the main constituent of supramediterranean woodland expanding at mid-altitudes, as it does today in the Peloponnesian. *Abies cephalonica* and *Pinus nigra*, the Mediterranean mountain conifers of the Peloponnesian, would have formed forests on the mountains bordering the Argolid to the west, north, and south, similar to the present vegetation at these high altitudes.

The anthracological results reflect the importance of the olive in the local vegetation as a cultivated tree and/or growing in the wild. This is in agreement with Kroll’s charcoal analysis in Tiryns where *Olea* was the most common taxon. Moreover, all the pollen cores from the area show a remarkable increase of *Olea* for the Bronze Age compared to previous periods. According to the Kotihi pollen diagram a similar situation occurred in the north-west Peloponnesian. The increase is interpreted as the result of combined factors: cultivation of the tree and proliferation in the wild in the maquis vegetation that, due to increased and more intense

100 Brysbaert & Veters 2015, 167–169 with fig. 5, 171 fig. 6.
101 Kroll 1982, 467.
human activity during this period, replaced the previous deciduous and mixed woodland. Evergreen oaks, Fabaceae, and Maloideae reflect the maquis vegetation that would have probably characterized the local uncultivated environments around Tiryns. According to Kroll’s charcoal analysis the evergreen trees such as Quercus ilex type and Phillyrea, together with Pinus, could have grown on the steeper hill slopes. In the pollen cores Quercus ilex/coccifera, Juniperus, Pistacia, Phillyrea, Erica, and Cistaceae indicate the expansion of maquis during the Bronze Age at the expense of the deciduous oak woodland that would have retreated to higher altitudes as a result of the intensive use of the plains for farming activities. Nevertheless, the anthracological results indicate that species of the deciduous woodland such as deciduous oak and ash were valued for their wood and were probably procured for specific uses, such as construction timber and/or for the manufacture of wooden objects. This would be in agreement with Kroll’s suggestion that deciduous riparian forests were still extant in the plain of the Inachos river and may have been the habitat of deciduous oak, ash, and Ulmus/Celtis identified in his samples. Similarly, even species non-existent in the plain, such as the fir and black pine, would have been brought from higher altitudes where, according to the pollen record, they constituted the natural vegetation since the earlier part of the Holocene.

The anthracological results from the Lower Citadel reflect the geographical breadth of basic activities of Tiryns’ inhabitants, such as the procurement of fuel and timber, which would have ranged from the plains and the cultivated orchards to specific locations on the mountainous areas to the west at a considerable distance from the site (approx. 30 km in straight line).

Based on the identification and uses of taxa attributed to the different contexts, the latter represent either the destruction of a building phase or the remains of fuel burned in thermal features. On the basis of the anthracological results we have already suggested that the combination of taxa from the local environment around Tiryns with others originating from non-local areas (e.g. the fir and the black pine) indicates the selection of specific taxa for specific purposes. In the case of Room 10 and the passageway we have opted to consider the taxa as representing the remains of building materials in relation to a thick ash deposit. Long and straight beams and poles would have been made from fir and black pine timbers while for other structural parts and features, timbers and plants commonly found in the surroundings would have been employed. If we may take this hypothesis a bit further, we could attribute the presence of dung in Room 10, as suggested by the phytolith analysis, to its use for the preparation of daub or plaster in order to cover the brushwood or other plant matter of an upper storey and/or ceiling. Such well-understood mixtures of daub would have helped in weatherproofing the walls and ceiling features and in controlling the humidity flow between the outside and inside of the building. As such, it would protect and preserve any organic material used in its construction from rotting in the most humid parts of the year, allowing the building to breathe naturally between seasons, and improve the strength and stability of the plaster.

The ashy sediment of Room 10, rich in dung, preserves phytolith remains that shed some light on the pastoral practices. The predominance of wild grass phytoliths most of which belong to the Chloridoids, i.e. plants related to the diet of grazers (cattle and sheep) and the low amounts of dicot leaf phytoliths that are mostly related to browsers (goats), suggests that the livestock kept in and around Tiryns belonged mainly to grazers (probably sheep) and maybe a few goats. The presence of Chloridoid short grasses points to free-ranging animals that have most probably been given supplementary feed with fodder as indicated by the high presence of straw. The presence of cereals (mainly wheat and some barley) in the sediment may indicate that cereals were also given as fodder to the animals and hence the cereal phytoliths have been brought into the room with the dung. There is no indication of any seed processing or storage in the southern part of the room, since stem phytoliths outnumber seed husk phytoliths.

With respect to the ovens the interpretation of the anthracological results, especially from oven no. 79/02, is more ambiguous. Qualitatively, the assemblage is similar to those from Room 10 and the passageway, i.e. the tentative construction timber debris. If we are to consider the taxa in this oven as fuel remains several questions arise: why is there a combination of non-local and local woods? Could they represent the remains of timber debris. If we are to consider the taxa in this oven as fuel?
the natural vegetation or tree orchards. Resinous woods and hardwoods, trees and shrubs are all represented in the assemblage. It is, therefore, impossible to identify any specific use of this oven based on the wood species burnt in it. In fact, the calorific properties (calorific production measured in kcal or joules per kilogram of burnt wood) vary little from one species to another, but depend mainly on the density and/or the chemical composition of their wood. However, the combustible properties fluctuate significantly in relation to the calibre, the rate of humidity (dry, seasoned, fresh, wet) and/or the physiological state of the wood (healthy wood v. dead or decayed wood). Consequently, selection could have been determined by the availability of resources, the wood’s moisture content and physiological state and its calibre. In the case of oven no. 79/02 many locally available taxa are present, and a wide range of calibres (although not possible to measure due to small fragments) to serve different purposes could have been at the disposal of the users either by choosing differently sized logs of a single species (e.g. olive branches and prunings) or by combining scrub vegetation (e.g. Fabaceae), tree branches, and bigger logs from cut-down trees (e.g. oaks). Other parameters such as the moisture content of the wood are difficult to evaluate, but in a settled community systematic firewood management and firewood storage was needed to meet the demands of a growing population, the development of technologies, and the increased energy needs. We may, thus, suggest that seasoned wood was used in hearths, ovens, and kilns. In such a context and given the availability of other firewood resources the presence of the non-local taxa in the assemblage of oven no. 79/02 could be interpreted as the remains of carpentry used in the fire and/or recycling of decayed/unused timbers from previous buildings no longer in use.

From a phytolith perspective both ovens are not as prolific as the ashy sediment in Room 10. Regarding oven no. 79/02 we notice that no difference has been detected in the ash of the interior and the exterior of the oven suggesting that the ash outside the oven is a dump of the ash that was inside. Dung was likely involved in the construction of oven no. 79/02. In general, it seems that dung and ash were used as admixtures in the clay constructions. The purpose of this was to make the clay more stable and prevent cracking. The presence of dung in only one ash sample must reflect intrusive clay pieces enriched with dung. Since spherulites have not been recovered from the rest of the ash samples we conclude that dung was most probably not used as fuel for the ovens analysed. Taphonomic conditions could be responsible for poor preservation since spherulites suffer dissolution in highly acidic environments and can be decomposed to calcium oxide when exposed to temperatures higher than 600°C. The environment, though, of the ashy sediments is not acidic but calcareous and the phytolith preservation does not point to such high temperatures.

On the other hand, leafy wood branches were the main component of the fuel material used in the ovens and especially in no. 46/03, since it preserved the larger volume of wood calcite. The fire in this oven must have been strong as indicated by the high percentage of molten phytoliths. The tinder used to start the fire was wild grasses as suggested by their high presence in almost all the samples. Cereal phytoliths have been identified in minor quantities in more than half of the samples and in all contexts. That means that apart from their use as staples they have entered the site either as by-products used as clay admixture and/or as fuel. Their presence as macroremains in oven no. 79/02 could represent residues of cooking.

The ashy area in the passageway preserves exotic plants as has been suggested by phytoliths. Palm phytoliths identified only in this context suggest that this ashy layer is a different archaeological context. The part of the palm from which these phytoliths were produced is uncertain. Previous research on Palmae phytoliths shows that Palmae species produce the same phytolith morphotype in all the organs. Accordingly, it is not easy to recognize the part or parts of the tree used at Tiryns. It could have been the palm wood or else the leaves or fruits, or even all of them. It will be recalled that leaves of the palm tree are extensively used for roofing, matting, and basketry; the trunks can be used for beams in a building, the fibres of the bark for ropes, and the sugar-rich fruits (at least in the case of cultivated palms) for food. It is not clear whether palms were part of the local vegetation or whether the material was somehow imported from other areas (Crete, North Africa, or the Near East). However, a very quick survey demonstrated that iconographic evidence of the palm with date fruit was depicted on a Late Bronze Age (LBA) painted plaster fragment from Knossos, now on display at the Heraklion Museum. Moreover, the palm tree was depicted on a MM IIIA amphora from the Loomweight Basement at Knossos and Immerwahr mentioned several instances observed on Aegean Bronze

118 From 4000 to 4500 kcal/kg, Théry-Parisot 2001, 157.
120 Asouti & Austin 2005; Théry-Parisot et al. 2010, 145–146.
121 Shahack-Gross 2011.
122 Piperno 2006; Vrydaghs et al. 2001.
124 Sarpaki 2001, 221 n. 255 reports Late Bronze Age charred wood remains from Crete, i.e. Palaikastro and Pseira.
125 Most recently Tsitsa 2013, 155.
126 Betancourt 1985, 104; Immerwahr 1990, 33 pl. 4 on MM II–IIIA depictions of palm trees on Kamares pottery.
Age painted plaster on which palm trees were depicted, ranging in date from LM IA (Akrotiri, West House, Nilotic Landscape and the palm tree with African from the Ravine), to LM III (Ayia Triada sarcophagus). Similar scenes were also recognized for the Greek mainland that have been dated to LH IIIB such as Mycenaean’s scene with Minoan Genii with donkey heads which, later on, could be joined with fragments depicting similar demons and palm trees, and a clay sealing with palm fronds depicted on it is known from outside the South-West Building at Pylos. Finally, Rackham published a paper on the vegetation from Thera dating to before and after its volcanic eruption and palm trees feature among the plants listed. The current palaeoenvironmental evidence provides no certain evidence for palm trees in the area of Tiryns in the Bronze Age. Nevertheless, the warm climate of the area would not be prohibitive for the growth of palm trees, especially on the coasts which would be within 2 km; the iconography and Rackham’s study also indicate that the palm tree certainly was known in the Aegean, directly or indirectly, from the MM IIIA period onwards on Crete and, a little later perhaps, also on Thera. As no palm fruit macroremains and no palm wood charcoal are identified in the anthracological analysis of this context, maybe the plant identified in the phytolith assemblages could derive from a mat or a tray for foodstuffs etc., a basket, or any household container or domestic object made of palm leaves. This may also have been brought into Tiryns from a trip to Crete or to the Near East. An interpretation of the palm phytoliths as remains of a mat, tray, or other container or domestic object gains additional probability with regard to the find spot since fragments of the best preserved faience head-shaped rhyton were excavated in the immediate vicinity and slightly above the ash that contained the palm phytoliths. One may assume that this vessel could have originally been placed on a mat, or in a tray or basket made of palm leaves. Previous studies provided evidence for the final embellishment of such faience vessels by gilding them in the mouth or snout of the figure vessel points to a manufacture according to Mycenaean predilections rather than an import from the Eastern Mediterranean. The whole assemblage, however, including an imported Canaanite amphora with Cypro-Minoan signs on the handles and a Hellado-Levantine chalice probably produced in the Argolid (but a vessel type mainly exported to the East), indicate an idiosyncratic collection of Cypriot/Near Eastern goods, Mycenaean products specifically geared towards export to the East, and potentially local emulations of Near Eastern or Cypriot vessels for luxurious consumption in a pan-Eastern Mediterranean elite context. The use of an imported container made from palm leaves would add yet another component to this assemblage.

Conclusions

All botanical species (except for Palmae) that we presented here as part of this very small assemblage from the new excavations in the Lower Citadel are no newcomers at the site of Tiryns because they have been known from the Lower Citadel, the Lower Town North-West as well as from the Lower Town North-East, but also from sites in the vicinity of Tiryns such as Midea and Mycenae. Samples derive from Palatial and Post-Palatial contexts in the Lower Citadel and Lower Town (with the latter only providing LH IIIC material), and a large number of sediment samples have been processed previously without much context-specific information available for them. Therefore, the studied archaeobotanical data from our four different find spots in the Lower Citadel of Tiryns highlighted the value, first, of combining the analysis of the fruit/seed macroremains with anthracological and phytolith studies and, second, of integrating these results into the archaeological study of their contexts. As such, the multiple approach to the taxa present in these limited assemblages from the new excavations in the Lower Citadel contribute to the already known material from the site itself but also to that from sites nearby such as Midea and Mycenae. The results show assemblages rich in taxa, which represent different natural environments that, at present, have their parallels in the vegetation of the Peloponnese from the coast to the higher mountains. The anthracological study indicated, for example, that species of mountain conifer forests (black pine and fir) and the deciduous woodland (oak and ash) were desired and selected for their wood and likely procured as construction timber, sometimes transported over considerable distances, and/or for the manufacture of wooden objects. Placed in its broader context our study gave another glimpse of a long-term and ongoing process previously noted in pollen studies conducted in the region. Our study results fitted these well and showed that the fuel and timber selected and consumed at Tiryns came

127 Immerwahr 1990, 73, 188(9) with further references.
128 Immerwahr 1990, 102, 181.
130 Rackham 1978.
132 Brysbaert & Vettes 2010.
133 Kroll 1982.
134 Pasternak 2006.
135 Margaritis et al. 2014.
136 Hillman 2011; Margaritis under study.
from the nearby plains and cultivated orchards, while other taxa were brought down by means of considerable human and other efforts from more distant locations.

Equally, the phytolith study of the dung material found in several contexts showed, for example, yet another way of how people creatively used and reused their nearby and more distant resources. Rather than employing dung as a fuel source for which it is best known, this plant-rich substance was likely used in admixtures to make daub and other clay-based features. As such, it functioned as waterproofing of walls and ceilings and by regulating the relative humidity of such surface covers, it prevented cracking and rotting of wooden beams in architectural features but also in oven constructions. The dung itself also offers rare glimpses of the goats and sheep that were part of the free-ranging livestock roaming around in and nearby Tiryns but which also received supplementary fodder to feed on.

Earlier research had already pointed out substantial evidence for the presence of non-local and exotic materials in various stages of production in LBA Tiryns. Without sampling for archaeobotanical remains, and the subsequent implementation of an array of different analytical methods, the import of foreign food stuffs and organic products tends to become lost in the archaeological record. Although based on limited data, in this instance our study helps to visualize the acquisition, production, and consumption patterns of some of the most ubiquitous but least-visible and appreciated materials employed by past people in their everyday activities. Our current study added yet another instance of such prolific but otherwise archaeologically invisible material. The phytolith study highlighted the presence of palm, a species which would fit climatically in the Peloponnesse but for which there is hitherto no such evidence. Probably arriving in the form of a woven mat or basket, the palm may have arrived from Crete or even further East, together with artefacts of East Aegean, Cypriot and/or Levantine origin, which were found concentrated in the northern sector of the Final Palatial Lower Citadel where such exotic materials indicated regular contacts between people from Tiryns with overseas.

For a better grasp of the human activities that took place in and around Tiryns in the LBA, Kroll’s previous work is also insightful. On the one hand, Kroll suggested that deciduous riparian forests still existed in the plain of the Inachos river and could have been the habitat of deciduous oak, ash, and Ulmus/Celtis. Additionally, his work and further pollen studies indicated that fir and black pine made up the natural vegetation since the early Holocene. On the other hand, Kroll argued for an intensified agriculture in the Late Palatial period near or even beyond the carrying capacity of the land which, according to him, was linked to an intensive horticultural regime and a basically identical, but less intensive, agricultural regime in the Post-Palatial period, a point also made by John’s pollen studies.

In Tiryns, where it has been suggested that the local community may have grown in numbers from Palatial to Post-Palatial times, such human and ecological pressures may have resulted in more forest clearance. At the same time, such clearances would have also formed one of possibly several strategies of firewood management and fuel storage in order to cope with the growing population, the development of technologies, and the increased energy needs that accompanied these rapidly developing societal changes towards c. 1200 BC.

Ecological phenomena and human manipulation of these may constitute corollaries of economic and social organization in the Mycenaean world. In the Argolid, high levels of technological knowledge, networks for the management and exchange of natural resources, and labour specialization had developed to such an extent that the conscious reuse and recycling of various materials (beyond recycling broken bronze tools and weapons), including timbers and plant-based items that no longer fulfilled their structural function in construction or utility as mat or container, had probably been much more common than evidenced by these limited archaeobotanical and archaeobotanical data presented here. However, piecing together such evidence offers new vantage points for the reconstruction and interpretation of “invisible” human practices in the past.

138 See e.g. Brysbaert 2013b; 2015 on labour specialization and both human and natural resource management and organization in the context of monumental construction activities.
Bibliography

Brysbaert, A. 2013a. ‘“The chicken or the egg?” Interregional contacts viewed through a technological lens at Late Bronze Age Tiryns, Greece’, OJA 32:3, 233–256.

Brysbaert, A. 2013b. ‘Set in Stone? Socio-economic reflections on human and animal resources in monumental architecture of Late Bronze Age Tiryns in the Argos Plain, Greece’, Arctos 47, 49–96.

Förderung der hellenischen Geschichte in Weilheim, Weilheim/Oberbayern.

Dafis, S. 2010. Τα δάση της Ελλάδας, Thessaloniki.

Kritseli-Providi, I. 1982. Τοιχογραφίες του θρησκευτικού κέντρου των Μυκηνών, Athens.

